
COMPUTER GRAPHICS (1) – 2019/2020 http://mkvnk.sk/PG1/ marcel.makovnik@fmph.uniba.sk

Change of the coordinate system and the rotation
about an arbitrary line in R3

Problem 1: We are working in the Cartesian coordinate system 〈O, e0, e1〉, where a point X has
coordinates

X =

(
2
1

)
.

Tell the coordinates of the point X in a coordinate system 〈A,B − A,C − A〉, where

A =

(
−1
0

)
, B =

(
0
2

)
, C =

(
−2
1

)
.

Solution: First start by recalling, that every coordinate system in plane is defined by its origin – a
point – and the two vectors. This way we can record the old, standard Cartesian coordinate system as
follows:

〈O, e0, e1〉 =

〈0
0
1

 ,

1
0
0

 ,

0
1
0

〉. (1)

Note, that we are using augmented vectors for representing points and vectors in our computations.
By simple computation and following the same fashion, we are allowed to write the other, new coordinate
system

〈A,B − A,C − A〉 =

〈−1
0
1

 ,

1
2
0

 ,

−1
1
0

〉. (2)

Both coordinate systems, together with the point X are depicted in the figure 1.
Now our problem can rephrased. Let denote by Xs = (2, 1, 1)> the point X in the old coordinate

system and by Xn the point X in the new coordinate system. Our task is now to find the coordinates
of Xn in the new coordinate system. This can be done by using the simple fact from linear algebra,
known as change of basis, which says following:

Xs = MnXn, (3)

where the matrix Mn is created by the column vectors of the new basis (beware of the order of the
columns), i.e.

Mn =

1 −1 −1
2 1 0
0 0 1

 . (4)

Equation (3) yields that the coordinates of Xn are computed as

Xn = M−1n Xs. (5)
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Figure 1: The old (Cartesian) coordinate system is black, the new coordinate system is depicted in blue
and the point X in red.

At this points we see, that Xn can be computed only if Mn is invertible (otherwise the coordinate
system would be degenerate). This is why it is useful to compute M−1n using the adjugate matrix
method, because firstly we have to compute the det(Mn), which tells us directly about the invertibility.

After the necessary operations we can conclude, that

Xn =

 1/3
1/3

1/3
−2/3

1/3
−2/3

0 0 1

2
1
1

 =

 4/3
−5/3

1

 . (6)

The geometric meaning behind the coordinates of Xs and Xn can be found in the figure 2.

Figure 2: The coordinates of Xs in the old coordinate system are depicted in gray, the coordinates of
Xn in the new coordinate system are depicted in blue.

Problem 2: Consider a point

X =

1
0
1


2
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and a line p defined by a point P and a vector u with coordinates

P =

−1
2
1

 , u =

 1
−1
1

 .

What are the coordinates of a point X̂, which is the result of the rotation of the point X about
the line p by the angle ϕ = 2

3
π? Perform the computation using

� quaternions

� affine transformations

Solution: So far we have not talked about the rotations about the arbitrary line in R3. This kind
of rotation is also an affine transformation, because it can be composed by translations and rotations
about the coordinate axes, which are affine transformations too (recall the fact, that the composition
of affine transformations is again an affine transformation).

The process of the rotation Rp,ϕ of the point X about the line p by the angle ϕ can be described in
the several steps:

1. Translate p, so it passes through the origin, i.e. perform the translation by the vector O − P (so
the point P is identified with the origin O, see fig. 3 (b)).

2. The line p now creates the angle ψ with the axis z, see fig. 3 (c).

3. By the orthogonal projection of the point R = O + u onto the plane xy we obtain the point R′,
so we can easily obtain the angle θ, as can be seen again in the fig. 3 (c).

4. Now we can rotate the line p by the angle −θ about the z-axis, so it lies in the plane xz, see fig.
3 (d). Note, that X does not have to lie in the plane xz necessarily.

5. Rotate the line p about the y-axis by the angle −ψ, so it is finally identified with the axis z, see
fig. 3 (e).

6. At this moment we can perform the rotation about the z-axis by the given angle ϕ, as we can see
in the fig. 3 (e).

7. However, the result is still not our desired point X̂. We need to perform the inverse trans-
formations, so the line p moves to its original position.

Then, the rotation Rp,ϕ can be written as follows:

Rp,ϕ = TP−O ◦ Rz,θ ◦ Ry,ψ ◦ Rz,ϕ ◦ Ry,−ψ ◦ Rz,−θ ◦ TO−P , (7)

where T∗ denotes a translation by the given vector, and R∗,∗ denotes the rotation about the given axis
by the given angle.

Several notes about the equation (7):

� The inverse transformation to the translation by the vector v is the translation by the vector −v,
and the inverse rotation about the given axis by the angle α is the rotation about the same axis
by the angle −α.

� The inverse transformations need to be performed in the opposite order as the ”forward” transfor-
mations, e.g. if we first perform the translation TO−P , the inverse translation TP−O is performed
as the last one.

� The first performed transformation is the translation TO−P , i.e. we write the transformations from
right to left.

3



COMPUTER GRAPHICS (1) – 2019/2020 http://mkvnk.sk/PG1/ marcel.makovnik@fmph.uniba.sk

Figure 3: The process of rotation. Note, that in (c) we are actually finding the polar coordinates of the
point R. The depicted situation does not reflect the problem which is solved in our case.

Finally, we are able to compute the desired point X̂ as

X̂ = Rp,ϕX. (8)

Now look, at our problem, where we will use augmented coordinates. As described in the process,
firstly we need to compute the vector

O − P =


1
−2
−1
0

 . (9)

The we compute the coordinates of the point X ′, which is obtained by the translation of the point
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X by the vector O − P (X ′ is depicted as a point X in the fig. 3 (b)):

X ′ = TO−PX =


1 0 0 1
0 1 0 −2
0 0 1 −1
0 0 0 1




1
0
1
1

 =


2
−2
0
1

 . (10)

The projection of the point R = O + u = (1,−1, 1, 1)> onto the plane xy is created simply by
setting the z-coordinate to zero, thus the coordinates of the point R′ are (1,−1, 0, 1)>. Now we need
to determine the angles θ and ψ. The angle θ is created, by the vector R′ − O = (1,−1, 0, 0)> and
the basis vector ex = (1, 0, 0, 0)>, which determines the x-axis. The computation of the angle between
these two vectors is

^R′ −O, ex = arccos
〈R′ −O, ex〉
‖R′ −O‖‖ex‖

= arccos

√
2

2
=
π

4
. (11)

However, this angle is not the angle θ. The problem is, that the given formula always return a value in
the interval 〈0, π〉, i.e. only the angles which ”lie” in the half-plane determined by the x-axis and the
positive y-coordinates. But R′ has a negative y-coordinate, i.e. it lies in the opposite half-plane. This
is why we need to add π to the computed angle, i.e.

θ =
7π

4
.

This is also in agreement with the fact, that if we represent the point R in spherical coordinates,
the angle θ attains value in the range 〈0, 2π). Similarly, the angle ψ ∈ 〈0, π〉 according to the spherical
coordinates, so we can compute this angle as

ψ = ^R−O, ez = arccos
〈R−O, ez〉
‖R−O‖‖ez‖

= arccos

√
3

3
. (12)

Finally, we have all the information for computing the point X̂:

X̂ = (TP−O ◦ Rz,θ ◦ Ry,ψ ◦ Rz,ϕ ◦ Ry,−ψ ◦ Rz,−θ ◦ TO−P )X, (13)

X̂ =


1 0 0 −1
0 1 0 2
0 0 1 1
0 0 0 1




cos(7π/4) − sin(7π/4) 0 0
sin(7π/4) cos(7π/4) 0 0

0 0 1 0
0 0 0 1




cos arccos(
√
3/3) 0 sin arccos(

√
3/3) 0

0 1 0 0

− sin arccos(
√
3/3) 0 cos arccos(

√
3/3) 0

0 0 0 1




cos(2π/3) − sin(2π/3) 0 0
sin(2π/3) cos(2π/3) 0 0

0 0 1 0
0 0 0 1




cos arccos(−
√
3/3) 0 sin arccos(−

√
3/3) 0

0 1 0 0

− sin arccos(−
√
3/3) 0 cos arccos(−

√
3/3) 0

0 0 0 1




cos(−7π/4) − sin(−7π/4) 0 0
sin(−7π/4) cos(−7π/4) 0 0

0 0 1 0
0 0 0 1




1 0 0 1
0 1 0 −2
0 0 1 −1
0 0 0 1




1
0
1
1

 =


0 −1 0 1
0 0 −1 3
1 0 0 2
0 0 0 1




1
0
1
1

 =


1
2
3
1

 .

(14)

If we are going to solve the same problem using quaternions, we are going to use the standard
coordinates of points and vectors and keep in mind the rules listed in the lecture, especially:

� quaternion multiplication is not commutative,
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� quaternion multiplication works in the same way as expansion of terms in R,

� quaternion addition is performed by elements.

Quaternion spatial rotation works only in the case, when the line is passing through the origin, i.e.
similarly as in the previous case, we need to translate the point X by the vector O − P = (1,−2, 1)>.
Our result is the point X ′ = (2,−2, 0)>.

Now that the line is passing through the origin, we need to normalize the determining vector u, i.e.
to define the vector

un =
u

‖u‖
=
( 1√

3
,− 1√

3
,

1√
3

)>
. (15)

A quaternion qu can be assigned to the vector un as follows:

qu =
1√
3
i +
(
− 1√

3

)
j +

1√
3
k. (16)

Similarly, this can be done for the point X ′, i.e. we can assign the following quaternion to it:

x = 2i− 2j + 0k. (17)

Note, that when using quaternions, we are making no difference between points and vectors, com-
pared to the augmented coordinates.

The rotation by the angle ϕ = 2π/3 has the following expression in the world of quaternions:

qR = cos
ϕ

2
+ qu sin

ϕ

2
=

1

2
+
(1

2
i− 1

2
j +

1

2
k
)
. (18)

Now the result x̃ of the rotation qR of the quaternion x is given by

x̃ = qR x q−1R . (19)

As we can see, we need to use the inverse of qR, but this is nothing else, than just performing the
rotation in the opposite direction, what is easily expressed as

q−1R = cos
ϕ

2
− qu sin

ϕ

2
=

1

2
−
(1

2
i− 1

2
j +

1

2
k
)
. (20)

Now, by the direct computation with respect to the quaternion rules we compute the quaternion

x̃ = qR x q−1R =
(1

2
+

1

2
i− 1

2
j +

1

2
k
)(

2i− 2j
)(1

2
− 1

2
i +

1

2
j− 1

2
k
)

= 2i + 2k, (21)

which represents the point X̃ = (2, 0, 2)>.
However, the point X̃ is still not our desired result, because at the beginning we translated the line

to the origin. This means, we need to perform the backward translation, i.e. by the vector P − O =
(−1, 2, 1)> and this operation finally gives us the final result

X̂ =

1
2
3

 . (22)
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